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ABSTRACT 28 

Fetal Alcohol Spectrum Disorder (FASD), a wide range of physical and 29 

neurobehavioral abnormalities associated with prenatal alcohol exposure (PAE), is 30 

recognized as a significant public health concern. Advancements in the diagnosis of 31 

FASD have been hindered by a lack of consensus in diagnostic criteria and limited use 32 

of objective biomarkers. Previous research from our group utilized resting state 33 

functional magnetic resonance imaging (fMRI) to measure functional network 34 

connectivity (FNC) revealed several sex- and region-dependent alterations in FNC as a 35 

result of moderate PAE relative to controls. Considering that FNC is sensitive to 36 

moderate PAE, this study explored the use of FNC data and machine learning methods 37 

to detect PAE among a sample of rodents exposed to alcohol prenatally and controls. 38 

We utilized previously acquired resting state fMRI data collected from adult rats 39 

exposed to moderate levels of prenatal alcohol (PAE) or a saccharin control solution 40 

(SAC) to assess FNC of resting state networks extracted by spatial group independent 41 

component analysis (GICA). FNC data was subjected to binary classification using 42 

support vector machine (SVM)-based algorithms and leave-one-out-cross validation 43 

(LOOCV) in an aggregated sample of males and females (n=48; 12 male PAE, 12 44 

female PAE, 12 male SAC, 12 female SAC), a males only sample (n=24; 12 PAE, 12 45 

SAC), and a females only sample (n=24; 12 PAE, 12 SAC). Results revealed that a 46 

quadratic SVM (QSVM) kernel was significantly effective for PAE detection in females. 47 

QSVM-kernel-based classification resulted in accuracy rates of 62.5% for all animals, 48 

58.3% for males, and 79.2% for females. Additionally, qualitative evaluation of QSVM 49 

weights implicate an overarching theme of several hippocampal and cortical networks in 50 



contributing to the formation of correct classification decisions by QSVM. Our results 51 

suggest that binary classification using QSVM and adult female FNC data is a potential 52 

candidate for the translational development of novel and non-invasive techniques for the 53 

identification of FASD. 54 
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ACRONYMS 65 

BOLD  Blood Oxygen Level Dependent 66 

FAS  Fetal Alcohol Syndrome 67 

FASD  Fetal Alcohol Spectrum Disorder 68 

fMRI  function Magnetic Resonance Imaging 69 

FNC  Functional Network Connectivity 70 

FWHM Full Width Half Max 71 

GICA  Group Independent Components Analysis 72 

GIFT  Group ICA of fMRI Toolbox 73 

HPA  Hypothalamic Pituitary Adrenal Axis 74 

LOOCV Leave One Out Cross Validation 75 

MLP  Multilayer Perceptron 76 

NMDA  N-methyl-D-Aspartate 77 



PAE  Prenatal Alcohol Exposure 78 

QSVM  Quadratic SVM 79 

RBF  Radial Basis Function 80 

RSN  Resting State Network 81 

SAC  Saccharin 82 

SVM  Support Vector Machine 83 

  84 



INTRODUCTION 85 

Fetal alcohol spectrum disorder (FASD) is a term that is utilized to encompass a 86 

wide range of morphological and neuro-behavioral phenotypes caused by prenatal 87 

alcohol exposure [PAE, (Loock et al., 2005; Williams, Smith, & Committee On 88 

Substance, 2015)]. The most severe phenotype is known as Fetal Alcohol Syndrome 89 

(FAS) and is linked to heavy prenatal alcohol exposure (PAE) (Lemoine, Harousseau, 90 

Borteyru, & Menuet, 1968; Manning & Eugene Hoyme, 2007). Children with FAS exhibit 91 

facial dysmorphologies, growth deficits, and numerous impairments in cognitive and 92 

behavioral functions related to attention, learning, memory, and motor coordination 93 

among others (Connor et al., 2000; Jones & Smith, 1973, 1975; Streissguth et al., 94 

1986). Although the most severe, FAS is the least common FASD with an estimated 95 

prevalence rate of ~0.1% in the U.S. (May & Gossage, 2001). However, when 96 

considering the entire spectrum, estimated prevalence rates of FASD (including FAS) 97 

fall between 1.1% and 5.0% of U.S. children, many of which will not display readily 98 

identifiable facial dysmorphologies, but may nonetheless exhibit cognitive and 99 

behavioral impairments (May et al., 2014; May et al., 2018). Unfortunately, children who 100 

do not display the cardinal facial features characteristic of FAS, may fail to receive a 101 

timely diagnosis which can prevent securing the appropriate treatment or support 102 

services  (Bertrand et al., 2005) and increase the likelihood of experiencing negative life 103 

outcomes related to academic success (Mattson & Riley, 1998), difficulty in finding and 104 

maintaining meaningful employment, and staying out of trouble with the law (Popova et 105 

al., 2011). In addition, disagreement among diagnostic criteria and a lack of clinical 106 

expertise contribute to challenges in identifying individuals with FASD (Mattson, Bernes, 107 



& Doyle, 2019). As a result, novel diagnostic approaches for FASD may possess clinical 108 

utility that may lead to improved outcomes. 109 

From the early clinical descriptions of FAS (Jones & Smith, 1973, 1975), 110 

research with human participants has been critical for understanding the social, 111 

physical, and neuro-behavioral sequelae of PAE (Connor et al., 2000; Streissguth et al., 112 

2004). However, variables such as dose (e.g., high, moderate, low), timing (e.g., 1st, 2nd 113 

trimester), and pattern of alcohol exposure (e.g., daily vs binge), can be difficult to 114 

account for and, for ethical reasons, are impossible to experimentally manipulate in 115 

human subjects research (Patten, Fontaine, & Christie, 2014). To overcome these 116 

challenges, animal models of FASD have been important for illuminating the underlying 117 

neurobiological consequences associated with developmental alcohol exposure. 118 

Considering that children are more likely to be exposed to moderate, rather than 119 

heavy, levels of prenatal alcohol exposure (May et al., 2018; May & Gossage, 2001), 120 

animal research aimed at studying the effects of moderate PAE is extremely valuable 121 

because it closely mimics the pattern of alcohol exposure observed in the human 122 

population. Within animal models of PAE, considerable work has been undertaken with 123 

the aim of investigating discrete brain areas such as the hippocampus (Gil-Mohapel, 124 

Boehme, Kainer, & Christie, 2010; Savage, Becher, de la Torre, & Sutherland, 2002) 125 

and cerebellum (Servais et al., 2007). However, higher level cognitive and behavioral 126 

functions, including those associated with FASD, involve sophisticated and highly 127 

coordinated activity across multiple, rather than single, brain regions (Green et al., 128 

2009). Functional network connectivity (FNC) methods (i.e. functional connectivity 129 

between coherent brain networks) offer an important lens that can be leveraged to 130 



understand the temporal statistical dependencies (e.g. correlations) of multiple and 131 

distant brain networks (Arbabshirani & Calhoun, 2011) following PAE. Functional 132 

magnetic resonance imaging (fMRI), a neuroimaging modality employed to non-133 

invasively measure blood-oxygenation-level dependent (BOLD) signals that reflect 134 

patterns of neuronal activity (Logothetis et al., 2001; Raichle & Mintun, 2006), has been 135 

widely utilized to derive measures of FNC (Allen et al., 2011). Group level fMRI data 136 

gathered at rest, an experimental condition that lacks externally presented stimuli or 137 

behavioral responses (Snyder & Raichle, 2012), can be examined by group 138 

independent component analysis (GICA). As a blind source separation algorithm, GICA 139 

is a data driven technique that extracts the temporal activation patterns (time courses) 140 

of resting state networks (RSNs) where each network may consist of multiple brain 141 

regions (Allen et al., 2011; Arbabshirani & Calhoun, 2011; Buckner, Krienen, & Yeo, 142 

2013). The FNC assessment consists of correlations between the time-courses of brain 143 

networks. Brain dysfunction can then be identified by abnormal correlations (e.g. too 144 

high or too low) when comparing FNC across control and experimental treatment 145 

conditions. Our group previously applied GICA to resting state fMRI data acquired from 146 

adult rodents exposed to moderate levels of PAE that revealed several sex and 147 

regionally dependent alterations in FNC (Rodriguez et al., 2016a) which point to FNC is 148 

a potential biomarker that can be used concurrently with machine learning for the 149 

identification of PAE. 150 

Machine learning is a topic of growing interest to the scientific community. It 151 

encompasses a wide range of statistical and computational techniques that can model 152 

the complex and nonlinear relationships between predictor variables. Machine learning 153 



is well suited for “wide” data sets in which the number of predictor variables exceeds the 154 

number of subjects (Bzdok, Altman, & Krzywinski, 2018) and generally emphasizes 155 

prediction rather than explanation, even at the expense of interpretability (Breiman, 156 

2001; Yarkoni & Westfall, 2017). Machine learning methods can be broadly categorized 157 

into two classes, supervised and unsupervised learning (Bastanlar & Ozuysal, 2014; 158 

Hastie, 2009). In unsupervised learning, the aim is to develop a model that can describe 159 

associations and patterns among a set of predictor variables (Hastie, 2009). In 160 

supervised learning, both outcome and predictors variables are used to develop models 161 

that can later be used on novel data, of the same structure, to predict an outcome. The 162 

process of building a model algorithmically is referred to as training, while deploying the 163 

developed model on data not included in the training phase is referred to as testing. 164 

Features represent the predictor variables of the input data used in training, while 165 

outcomes represent the predicted output variables (Bastanlar & Ozuysal, 2014). 166 

Outcome variables can take on quantitative or qualitative values. When output variables 167 

take on a set of discrete labels, the predictive model is called a classifier. A binary 168 

classifier specifically refers to a model that predicts a variable adopting only one of two 169 

discrete outcome values often referred to as labels. Classifiers can then be evaluated 170 

based on how well they predict an outcome variable when deployed on test data (Choi 171 

et al., 2020). 172 

The discovery of phenotypic, biological, and psychometric markers related to 173 

PAE has motivated explorations of machine learning methods for detecting FASD in 174 

clinical settings. Fang and colleagues used facial dysmorphology data and binary 175 

classification to identify facial features that discriminate between FAS and control 176 



participants (Fang et al., 2008). Zhang and colleagues used psychometric, eye tracking, 177 

and structural MRI data alone and in combination to detect FASD (Zhang et al., 2019). 178 

Utilizing the same psychometric data set as Zhang et al., 2019, artificial neural networks 179 

proved useful in identifying individuals with FASD (Duarte, 2020). Machine learning has 180 

also been utilized to detect FASD in children and adolescents solely from structural MRI 181 

data (Little & Beaulieu, 2020). However, the utility of machine learning for the detection 182 

of FASD from fMRI connectivity data remains to be determined. 183 

In this study, we explore the use of binary-classification algorithms to detect PAE 184 

among a mixed sample of FNC data from rodents with PAE and controls. The 185 

effectiveness of the implemented binary-classifiers was tested using leave-one-out-186 

cross validation (LOOCV). Functional neuroimaging data were obtained from our 187 

previously published report that characterized the effects of moderate PAE on FNC by 188 

utilizing GICA of resting-state fMRI data (Rodriguez et al., 2016a). The primary goal of 189 

this current investigation was to explore the utility of machine learning algorithms as a 190 

novel and non-invasive means to classify aberrant brain connectivity patterns 191 

associated with PAE. 192 

METHODS 193 

Subjects 194 

Subjects, materials, and procedures were previously reported in separate studies 195 

approved by the Institutional Animal Care and Use Committee of the University of New 196 

Mexico main campus and Health Sciences Center (Rodriguez et al., 2016a; Rodriguez 197 

et al., 2016b). Briefly, 48 Long-Evans rats (24 SAC and 24 PAE; 24 males and 24 198 

females) were generated in a single breeding round designed to prenatally expose rats 199 



to either a 5% ethanol (v/v) or 0.066% saccharin solution (Hamilton et al., 2014) for the 200 

duration of the entire 21-day gestational period. Following weaning, animals were 201 

housed with an age- and weight-matched cagemate from the same prenatal treatment, 202 

but different litter, in standard plastic cages with water and food available ad libitum.  203 

At 3-4 months of age, all animals underwent a series of structural- and blood 204 

oxygenation level dependent (BOLD) fMRI-scan sequences under isoflurane anesthesia 205 

for ~45 min in a 4.7T Bruker Biospin (Billerica, MA) MRI scanner. Functional MRI data 206 

were acquired with a 10-minute echo planar imaging acquisition at a temporal resolution 207 

(TR) of 2 sec (FOV = 3.84 cm x 3.84 cm, matrix = 64 x 64, TE = 21.3 ms, flip angle = 208 

90°, 27 slices, and slice thickness = 1 mm). 209 

Image Preprocessing, Group Independent Component Analysis (GICA), and 210 

Functional Network Connectivity 211 

 Preprocessing, GICA, and FNC methods are described in (Rodriguez et al., 212 

2016a). To summarize, fMRI data preprocessing included realignment, spatial 213 

normalization to the Paxinos & Watson atlas (Schweinhardt et al., 2003), and smoothing 214 

with a 0.5 mm full-width-half-maximum (FWHM) Gaussian kernel in Statistical 215 

Parametric Mapping 8 (SPM8) (Wellcome Department of Cognitive Neurology, London, 216 

UK) running in MATLAB (Mathworks, Inc., Natick, MA) version R2012b. After 217 

preprocessing, 40 group-level independent components were extracted utilizing the 218 

Infomax algorithm (Bell & Sejnowski, 1995) in the Group ICA of fMRI Toolbox (GIFT, 219 

www.trendscenter.org/software/gift) (Calhoun, Adali, Pearlson, & Pekar, 2001). Of the 220 

initial 40 components, 17 components were retained based on the exclusion of 221 



components localized to white matter tracts or cerebro-spinal fluid and the presence of 222 

artifactual features upon visual inspection. 223 

In this study, component time courses were orthogonalized with respect to the 224 

following: (1) linear, quadratic, and cubic trends; (2) the six realignment parameters 225 

(translation in the x, y, and z directions and rotations about the x, y, z axes); and the 6 226 

realignment parameter derivatives. Time-courses were lowpass filtered with a cutoff at 227 

0.15Hz. Functional network connectivity (FNC) measures were estimated from pairwise 228 

correlations between average individual component time-courses for each rat. A total of 229 

136 unique pairwise correlations were calculated for each animal given by the following: 230 

( 𝐶𝐶∗(𝐶𝐶−1)
2

 ) where C = 17 (the number of retained components). Thus, the structure of the 231 

FNC data utilized for machine learning procedures consisted of 48 correlation matrices, 232 

one from each rodent. All correlation values were Fisher’s Z transformed for subsequent 233 

analyses and served as features during machine learning training. Retained 234 

components are displayed in Figure 1 and the anatomical location for the peak value of 235 

each component, in Paxinos and Watson space, is displayed in Table 1 (Paxinos & 236 

Watson, 2004). However, these components and their location were previously reported 237 

in an earlier study and do not represent results from an independent investigation 238 

(Rodriguez et al., 2016a). Components are displayed to aid in localizing the brain 239 

regions from which the FNC measures for this study were derived from. 240 

 241 



Machine Learning Procedures 242 

The machine learning methods to classify FNC patterns between PAE and SAC 243 

animals were based on work previously described in (Vergara, Mayer, Kiehl, & Calhoun, 244 

2018) and relied on utilizing FNC data from GICA-extracted components. As reported in 245 

Vergara and colleagues (2018) SVM tuning parameters were set to a least squares 246 

solving method, a soft margin parameter of 0.1 and a feature selection threshold of 247 

absolute value of 0.75. Feature selection was implemented by conducting a two-sample 248 

t-test on SAC and PAE groups for each of the 136 FNC values and discarding FNCs 249 

with a t-value failing to meet the |t| = 0.75 threshold. The use of t-tests was not 250 

implemented to statistically compare groups as those analyses were reported in a 251 

previous investigation (Rodriguez et al., 2016a). Instead, the resulting t-values were 252 

used to select a subset of FNC features with the aim of guarding against overfitting and 253 

improving generalizability of the computational models. This SVM configuration was 254 

used to test five different SVM kernels: linear, quadratic (QSVM), cubic, radial basis 255 

functions (RBF) and multilayer perceptron (MLP) kernels in MATLAB (Mathworks, Inc., 256 

Natick, MA) version 2016b to perform binary classification of FNC data at the subject 257 

level. Because of the relatively small sample size, leave-one-out cross validation 258 

(LOOCV) was chosen to assess classification performance. The LOOCV procedure 259 

consisted of isolating one sample for testing and the remainder of the samples for 260 

training across multiple iterations as displayed in Figure 2. Statistical significance of 261 

accuracy rates was assessed by a permutation test approach in which the prenatal 262 

condition labels of individual subject’s FNC data were randomized and subsequently 263 

subjected to 10,000 replications of QSVM classification and LOOCV with random 264 



groups on each replication to establish the null probability distribution of accuracy rates 265 

from randomized data (null model). Significance at the p = 0.01 level (Bonferroni 266 

corrected α=.05/5, accounting for the five kernels tested) was estimated from the null 267 

distribution. Finally, to address classification performance within each sex separately, 268 

the permutation test approach and LOOCV procedures were repeated for subsets of 269 

male and female only data. 270 

RESULTS 271 

Table 2 displays the accuracy rates of multiple kernels used in SVM binary 272 

classification. The quadratic kernel demonstrated the highest classification rates when 273 

classifying all (both male and female samples; 62.5%) and female samples only 274 

(79.2%). The quadratic and RBF kernels demonstrated the highest accuracy rates for 275 

male samples (58.3 %). The lowest accuracy rates were observed for all samples using 276 

the RBF kernel (50%), males using the linear kernel (50%) and for females a three-way 277 

tie (66.7%) among linear, cubic, and MLP kernels. The quadratic SVM (QSVM) kernel 278 

displayed the best overall accuracy rates for discriminating between alcohol- and 279 

saccharin exposed animals and was therefore chosen for the remaining series of 280 

analyses. 281 

Figure 3 displays accuracy-rate histograms after the prenatal conditions of FNC 282 

data were randomized and subjected to 10,000 iterations of QSVM classification and 283 

LOOCV to establish null distributions. Each null distribution was used to estimate the 284 

adjusted p=0.01 level threshold of statistical significance for accuracy rates of QSVM 285 

classification in all (A), female (B), and male samples (C). The significance threshold for 286 

all samples was 63%. The accuracy rate for all animals in QSVM classification (62.5%) 287 



was not significant. For females, the significance threshold was estimated at 75% thus 288 

the QSVM classification rate for females (79.2%) was statistically significant. Finally, the 289 

significance threshold for males was 71%, rendering the QSVM’s performance for 290 

classifying males (58.3%) as not statistically significant. To verify that the permutation 291 

tests were not influenced by FNC couplings with unequal variances, we performed a 292 

supplementary analysis consisting of a series of Levene’s tests for equality of variance 293 

on the female data. The results of these tests are displayed in Supplementary Figure 1 294 

and revealed no significant differences of variance between PAE and SAC females. 295 

This analysis was important to verify that the permutation results were not influenced by 296 

differences in group variability. 297 

Figure 4 displays a series of matrices that display the percentage of times that 298 

each FNC value met the feature selection threshold during all iterations of LOOCV for 299 

all animals (A), females (B), and males (C). For all animals, a total of 48 iterations of 300 

LOOCV were conducted, whereas LOOCV was conducted over 24 iterations separately 301 

for male and female animals. These matrices indicate which FNC couplings were 302 

typically used as features for training with the five separate SVM kernels. 303 

The QSVM assigns weights to each FNC feature in each iteration used in 304 

classification. Mean classification weights are displayed in Figure 5 for all samples(A), 305 

females (B), and males (C). Weights can be used to explore the contributions of specific 306 

component correlations that most strongly impact correct classification decisions. For all 307 

samples, a general pattern of moderately positive weights results from network 308 

correlations between cerebellar-hippocampal connectivity. Other moderate positive 309 

weights result from couplings in hippocampal-striatal, hippocampal-cortical, and 310 



hippocampal-midbrain components, while a strong mean positive weight was found in a 311 

hippocampal-thalamic coupling consisting of components with peak activations localized 312 

to the ventral-anterior thalamus and the dentate gyrus of the hippocampus. Strong 313 

negative weights result from cerebellar-cortical, hippocampal-midbrain, and cortical-314 

striatal couplings. For males, strong and moderately strong positive weights cluster in 315 

cortical-midbrain, cortical-hippocampal, cortical-cortical, cerebellar-hippocampal, and 316 

hippocampal-thalamic, midbrain-thalamic, midbrain-striatal, and midbrain-hippocampal 317 

connectivity. Strong negative weights are observed between striatal-cortical, cerebellar-318 

cortical, cortical-hippocampal, and midbrain-midbrain, and striatal-thalamic connectivity. 319 

For females, strong and moderately positive weights are observed between cortical-320 

hippocampal, cortical-striatal, striatal-thalamic, cerebellar-hippocampal, and cerebellar-321 

midbrain couplings. Clear patterns of moderately strong negative weights are observed 322 

in hippocampal-midbrain, cortical-cortical, cortical-cerebellar, cortical-hippocampal, 323 

cortical-cortical, thalamic-hippocampal, striatal-hippocampal, striatal-cortical, and 324 

striatal-thalamic couplings. 325 

DISCUSSION 326 

The motivation for this study was predicated on previous work that showed the 327 

potential of FNC as a biomarker for moderate PAE in adult rats. In the present study, 328 

our goal was to explore the translational utility of binary classification of FNC with the 329 

aim of guiding future human subjects research. We found that a QSVM kernel was 330 

significantly effective for PAE detection in females. QSVM-kernel-based classification 331 

resulted in a correct accuracy rate of 62.5% for all animals, 58.3% for males, and 79.2% 332 

for females. Characterization of QSVM weights implicate an overarching theme of 333 



several hippocampal and cortical networks in contributing to the formation of correct 334 

classification decisions by the QSVM. Our results imply that binary classification using 335 

QSVM and female FNC data may hold translational value for the development of novel 336 

and non-invasive techniques for the identification of PAE. 337 

Surprisingly, statistically significant classification accuracies were only observed 338 

for females using QSVM. In our previous investigation, we found males, relative to 339 

females, displayed more alterations in FNC as a result of moderate PAE (Rodriguez et 340 

al., 2016a) and thus higher classification accuracies in females were unexpected. A 341 

possible explanation for our findings may be due to differences in the processing of 342 

independent component time-courses used to assess FNC. In the present investigation, 343 

time-courses were pre-processed by detrending, regressed for motion using an 344 

approach that included temporal derivatives, and filtered to account for in-scanner 345 

movement and to reduce the potential signal contributions stemming from respiratory 346 

processes. Relatedly, modifications to time-course pre-processing may have resulted in 347 

a greater number of FNC features that met the feature selection threshold and 348 

facilitated classification in females. An alternative explanation is that the QSVM is 349 

capturing complex non-linear relationships that are beyond the scope of the 350 

conventional explanatory modeling methods (Breiman, 2001). In the present work, non-351 

linear data features resulted in improved classification of PAE in females. 352 

In the present study, maternal blood alcohol levels during prenatal development 353 

reached a moderate 60.8 mg/dL (Davies et al., 2019). In rat studies of PAE, maternal 354 

alcohol serum levels can range from 30mg/dL (Cullen, Burne, Lavidis, & Moritz, 2014) in 355 

light exposure to 300 mg/dL (Mooney & Varlinskaya, 2011) in heavier exposure models. 356 



Furthermore, the alcohol-exposed offspring in the present investigation did not produce 357 

any detectable differences in brain volume measured by structural MRI nor blood 358 

perfusion in the frontal cortex measured by arterial spin labeling when assessed in 359 

adulthood and compared to their corresponding control groups (Rodriguez et al., 360 

2016a). Taken together, these points suggest that the classification accuracy for 361 

females is achieved despite moderate levels of PAE, the absence of gross brain 362 

morphological abnormalities, and alterations in vascular function. 363 

The results presented here, must also be considered within the context of a 364 

number of limitations. First, the successful SVM method in our results was non-linear 365 

which decreased our ability of establishing one-to-one relationships between specific 366 

brain abnormalities and PAE, thereby reducing interpretability of the computational 367 

model developed for classification. However, this disadvantage is compensated by the 368 

enhanced ability of detecting PAE in females. Second, the FNC data utilized was of the 369 

static form which ignores temporal variations in connectivity across the scanning period. 370 

Examination of dynamic connectivity, which can account for these variations, may lead 371 

to disparate findings as evidenced in human-subjects research with dynamic FNC 372 

approaches showing better classification performance (Hutchison et al., 2013; Vergara, 373 

Mayer, Kiehl, & Calhoun, 2018). Third, the neuroimaging data utilized to subsequently 374 

measure FNC was gathered from rodents under light isoflurane anesthesia. This 375 

approach was chosen to minimize the influence of motion during image acquisition. An 376 

alternative approach could have employed the use of animal restraining devices to 377 

overcome anesthetic-related influences on brain function (King et al., 2005). Such 378 

devices used with rats and voles have revealed modest contributions of stress in normal 379 



and awake animals after an acclimation procedure (Liang, King, & Zhang, 2011, 2012; 380 

Reed, Pira, & Febo, 2013; Yee et al., 2016). However, changes in the sensitivity of 381 

stress-related circuitry including the hippocampus and the hypothalamic-pituitary-382 

adrenal (HPA) axis following PAE are well documented (Hellemans et al., 2008; Lam et 383 

al., 2018; Raineki, Ellis, & Weinberg, 2018), and carry the potential to introduce a 384 

different set of confounds in an awake scanning procedure with PAE rodents. Fourth, 385 

animals in this investigation reached adulthood by the time image acquisition was 386 

conducted. Thus, additional research will need to examine machine learning detection 387 

in earlier developmental periods to enhance any potential utility of this approach. Fifth, 388 

our results are based off of a total sample size of 48, and a within-sex sample size of 24 389 

(12 PAE; 12 SAC). Consequently, the machine learning procedures employed in this 390 

report stand to benefit greatly from validation with increased sample sizes to better 391 

leverage the advantages of machine learning classifiers and may partially explain the 392 

gap in classification accuracies observed between males and females. Finally, and most 393 

importantly, we recognize the binary classification approach used in this investigation 394 

was conducted on rodent data, and any clinical applications will need be developed with 395 

human subjects. 396 

The classification techniques used in this study have not been utilized with FNC 397 

data assessed from resting state fMRI within the context of PAE. In contrast, 398 

psychometric, structural MRI, eye tracking, and facial features have been used with 399 

binary classification and other machine learning techniques to detect PAE in human 400 

subjects. Using psychometric data alone, artificial neural networks attained an accuracy 401 

rate of 75% (Duarte, 2020). Zhang and colleagues utilized eye tracking, psychometric, 402 



and combined eye tracking, psychometric, and diffusion tensor imaging data from 403 

children and adolescents with PAE to achieve 72%, 67%, and 78% accuracy rates 404 

respectively (Zhang et al., 2019). Using structural MRI data from children and 405 

adolescents, one study achieved a 77% classification accuracy rate (Little & Beaulieu, 406 

2020; Zhang et al., 2019). In a study relying on a 3d facial feature scanning system, 407 

Fang and colleagues achieved an overall 80% accuracy in two ethnic samples of 408 

children with FAS (Fang et al., 2008). Thus, the QSVM method employed in the present 409 

investigation achieved a classification accuracy comparable to those previously found in 410 

the literature and suggest that this approach is feasible and may hold translational utility 411 

if applied in research with humans. 412 

FASD continues to pose as a significant public health concern with far reaching 413 

economic, and societal consequences. The application of SVM-based classification 414 

algorithms to FNC data may serve as a potential tool that can be developed into novel 415 

and non-invasive diagnostic aids for FASD. If successful, such an approach may lead to 416 

earlier diagnoses resulting in timelier referrals to treatment and support services that 417 

may lead to improved outcomes for individuals with FASD and their caregivers. 418 
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 622 

Table 1. Anatomical locations of extracted components. Components are arranged according to the Paxinos and Watson 623 

rat atlas (Paxinos & Watson, 2004) coordinates from anterior to posterior within regional grouping. Cortex (COR), 624 

hippocampus (HIP), midbrain (MID), striatum (STR), and cerebellum (CER). Reprinted with permission (Rodriguez et al., 625 

2016a) with modified labels to reflect the acronyms used in this study. 626 

Component 
Number & Label Coordinates in (AP, ML, DV) Abbreviation & Area                                                     .  

39 COR1 1.5 0.1 -2.7 Cg2 cingulate cortex, area 2 

15 COR2 -0.1 3.5 -2.9 S1FL primary somatosensory cortex, forelimb region 

24 COR3 -3.3 -1.9 -1.5 LPtA lateral parietal association cortex 

32 COR4 -8.7 -2.1 -1.7 V2MM
/V1M secondary visual cortex, medo medial/primary visual cortex 

3 HIP1 -5.1 2.1 -3.3 DS dorsal subiculum 

34 HIP2 -5.1 -5.3 -6.9 MoDG molecular layer of the dentate gyrus 

30 HIP3 -5.9 4.9 -6.3 Or Oriens layer of the hippocampus 

23 HIP4 -6.1 -3.1 -4.1 MoDG molecular layer of the dentate gyrus 

17 HIP5 -6.3 -5.5 -5.5 Lmol lacunosum moleculare layer of the hippocampus 

1 MID1 -3.5 -1.9 -7.7 ZID/ZI
V zona incerta dorsal/zona incerta ventral 

18 MID2 -6.3 2.5 -4.7 InG intermediate gray layer of the superior colliculus 

6 MID3 -8.3 1.7 -2.7 ECIC external cortex of the inferior colliculus 



14 STR1 2.1 2.3 -4.3 Cpu Caudate Putamen 

25 STR2 -0.7 1.3 -4.9 LSI lateral septal nucleus, intermediate part 

40 THL1 -1.7 -1.9 -5.9 VA/VL region where VA and VL overlap (ventral anterior thalamic 
nucleus/ventrolateral thalamic nucleus) 

16 THL2 -3.1 1.7 -6.1 Po posterior thalamic nuclear group 

10 CER1 -11.7 -1.5 -5.1 MedD
L medial cerebellar nucleus, dorsolateral protuberance 

 627 

 628 

  629 



Table 2. Classification accuracy rates of different SVM kernels. Support vector machine (SVM), radial basis function 630 

(RBF), multilayer perceptron (MLP). * significant at Bonferroni corrected (α = 0.05/5) threshold. 631 

SVM Kernel All Samples % Males % Females % 

Linear 54.0 50.0 66.7 

Quadratic 62.5 58.3 79.2* 

Cubic 60.4 41.7 66.7 

RBF 50.0 58.3 70.8 

MLP 54.2 54.2 66.7 

 632 



Figure 1. 

 

Figure 1. Retained independent components. Independent components in sagittal, coronal, and 

axial views. Independent component time courses were used to assess FNC. The anatomic 

location of the peak component t-value determined grouping into cortical (Cx), midbrain (Mb), 



hippocampal (H), striatal (St), cerebellar (C) and thalamic (T) networks. Reprinted with 

permission (Rodriguez, Davies, et al., 2016). 

  



Figure 2.  

 

Figure 2. Schematic for the machine learning workflow. FNC matrices represent the 136 

pairwise correlations between independent component time-courses (blue=negative 

correlations, red=positive correlations) for each subject. The number of iterations was 

dependent on the number of animals in the sample. For each iteration, (1) the connectivity 

matrix from the jth subject was left out, (2) the remaining matrices (47 in the case for all animals, 



24 for males or females) underwent feature selection via absolute t-value threshold which 

served as input for (3) training one of five SVM binary-classification kernels. The computational 

model developed during training is then (4) tested on the left out FNC data and decisions were 

(5) verified as correct or incorrect. Finally, the jth subject data is replaced (6) and the procedure 

repeated leaving the next animal out. The procedure was repeated until all classification 

decisions were gathered and verified. Correct classification decisions out of 48 (all animals) or 

24 (males or females) comprise accuracy rates. Dotted lines represent the workflow of the 

leave-one-out cross validation procedure, while the solid line represents the machine learning 

workflow of training and testing. 

  



Figure 3. 

 

Figure 3. Null-model classification accuracy histograms. Histograms illustrate the SVM 

classification accuracies after prenatal condition labels were randomized and subjected to 

10,000 iterations of LOOCV. The resulting distribution of accuracy rates under the null model 

provided the basis for calculating the probability of obtaining an accuracy rate equal to or 

greater than the observed SVM classification accuracy rates for A) all animals, B) females, and 



C) males (i.e. p-values). Significance is set at a Bonferroni corrected level α = 0.05/5 (α = 0.01) 

to correct for the five different kernels tested. 

  



Figure 4. 

 

 

Figure 4. Usage percentages. Cells display usage percentage of FNC values as features in all 

iterations of LOOCV for (A) all animals (48 iterations), (B) females (24 iterations), and (C) males 

(24 iterations). Cells within a network are ordered numerically, for example, the use percentage 

of the first hippocampal component is displayed along the first row of the HIP grouping that is 



predominantly characterized by a row of white cells in panel A. Component labels correspond to 

striatal (STR), thalamic (THL), cortical (COR), hippocampal (HIP), midbrain (MID), and 

cerebellar (CER) networks. LOOCV, leave-one-out-cross-validation. 

 

  



Figure 5. 

 

Figure 5. Mean QSVM weights. Cells display mean weights for pairwise correlation values used 

in quadratic SVM classification decisions for (A) all animals, (B) females, and (C) males. 

Component labels correspond to striatal (STR), thalamic (THL), cortical (COR), hippocampal 

(HIP), midbrain (MID), and cerebellar (CER) networks. SVM, support vector machine. 

 



Supplementary Figure 1.        

 

        

Supplementary Figure 1. Levene’s tests for homogeneity of variance. False discovery rate 

(FDR) corrected p-values resulting from a series of Levene’s tests of homogeneity of variance 

between female PAE and SAC FNC values. Component labels correspond to striatal (STR), 

thalamic (THL), cortical (COR), hippocampal (HIP), midbrain (MID), and cerebellar (CER) 

networks. 
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